Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Genet Genomics ; 48(12): 1111-1121, 2021 12.
Article in English | MEDLINE | ID: covidwho-1587279

ABSTRACT

The rapid accumulation of mutations in the SARS-CoV-2 Omicron variant that enabled its outbreak raises questions as to whether its proximal origin occurred in humans or another mammalian host. Here, we identified 45 point mutations that Omicron acquired since divergence from the B.1.1 lineage. We found that the Omicron spike protein sequence was subjected to stronger positive selection than that of any reported SARS-CoV-2 variants known to evolve persistently in human hosts, suggesting a possibility of host-jumping. The molecular spectrum of mutations (i.e., the relative frequency of the 12 types of base substitutions) acquired by the progenitor of Omicron was significantly different from the spectrum for viruses that evolved in human patients but resembled the spectra associated with virus evolution in a mouse cellular environment. Furthermore, mutations in the Omicron spike protein significantly overlapped with SARS-CoV-2 mutations known to promote adaptation to mouse hosts, particularly through enhanced spike protein binding affinity for the mouse cell entry receptor. Collectively, our results suggest that the progenitor of Omicron jumped from humans to mice, rapidly accumulated mutations conducive to infecting that host, then jumped back into humans, indicating an inter-species evolutionary trajectory for the Omicron outbreak.


Subject(s)
COVID-19/genetics , Evolution, Molecular , Host Specificity/genetics , SARS-CoV-2/genetics , Animals , Binding Sites , COVID-19/virology , Host-Pathogen Interactions/genetics , Humans , Mice , Mutation/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
2.
Comput Biol Chem ; 96: 107613, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1549716

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is an ongoing global health emergency that has caused tremendous stress and loss of life worldwide. The viral spike glycoprotein is a critical molecule mediating transmission of SARS-CoV-2 by interacting with human ACE2. However, through the course of the pandemics, there has not been a thorough analysis of the spike protein mutations, and on how these mutants influence the transmission of SARS-CoV-2. Besides, cases of SARS-CoV-2 infection among pets and wild animals have been reported, so the susceptibility of these animals requires great attention to investigate, as they may also link to the renewed question of a possible intermediate host for SARS-CoV-2 before it was transmitted to humans. With over 226,000 SARS-CoV-2 sequences obtained, we found 1573 missense mutations in the spike gene, and 226 of them were within the receptor-binding domain (RBD) region that directly interacts with human ACE2. Modeling the interactions between SARS-CoV-2 spike mutants and ACE2 molecules showed that most of the 74 missense mutations in the RBD region of the interaction interface had little impact on spike binding to ACE2, whereas several within the spike RBD increased the binding affinity toward human ACE2 thus making the virus likely more contagious. On the other hand, modeling the interactions between animal ACE2 molecules and SARS-CoV-2 spike revealed that many pets and wild animals' ACE2 had a variable binding ability. Particularly, ACE2 of bamboo rat had stronger binding to SARS-CoV-2 spike protein, whereas that of mole, vole, Mus pahari, palm civet, and pangolin had a weaker binding compared to human ACE2. Our results provide structural insights into the impact on interactions of the SARS-CoV-2 spike mutants to human ACE2, and shed light on SARS-CoV-2 transmission in pets and wild animals, and possible clues to the intermediate host(s) for SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/chemistry , COVID-19/veterinary , COVID-19/virology , Mutation, Missense , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/genetics , Animals , Animals, Wild/genetics , Animals, Wild/virology , COVID-19/transmission , Computational Biology , Host Microbial Interactions/genetics , Host Specificity/genetics , Humans , Molecular Dynamics Simulation , Pandemics/veterinary , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Pets/genetics , Pets/virology , Protein Interaction Domains and Motifs/genetics , Risk Factors
3.
PLoS Comput Biol ; 17(11): e1009560, 2021 11.
Article in English | MEDLINE | ID: covidwho-1523396

ABSTRACT

Severe acute respiratory coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is of zoonotic origin. Evolutionary analyses assessing whether coronaviruses similar to SARS-CoV-2 infected ancestral species of modern-day animal hosts could be useful in identifying additional reservoirs of potentially dangerous coronaviruses. We reasoned that if a clade of species has been repeatedly exposed to a virus, then their proteins relevant for viral entry may exhibit adaptations that affect host susceptibility or response. We perform comparative analyses across the mammalian phylogeny of angiotensin-converting enzyme 2 (ACE2), the cellular receptor for SARS-CoV-2, in order to uncover evidence for selection acting at its binding interface with the SARS-CoV-2 spike protein. We uncover that in rodents there is evidence for adaptive amino acid substitutions at positions comprising the ACE2-spike interaction interface, whereas the variation within ACE2 proteins in primates and some other mammalian clades is not consistent with evolutionary adaptations. We also analyze aminopeptidase N (APN), the receptor for the human coronavirus 229E, a virus that causes the common cold, and find evidence for adaptation in primates. Altogether, our results suggest that the rodent and primate lineages may have had ancient exposures to viruses similar to SARS-CoV-2 and HCoV-229E, respectively.


Subject(s)
COVID-19/genetics , COVID-19/virology , Coronavirus Infections/genetics , Coronavirus Infections/virology , SARS-CoV-2/genetics , Adaptation, Physiological/genetics , Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/physiology , Animals , CD13 Antigens/genetics , CD13 Antigens/physiology , Common Cold/genetics , Common Cold/virology , Computational Biology , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/physiology , Evolution, Molecular , Genomics , Host Microbial Interactions/genetics , Host Microbial Interactions/physiology , Host Specificity/genetics , Host Specificity/physiology , Humans , Mammals/genetics , Mammals/virology , Phylogeny , Protein Interaction Domains and Motifs/genetics , Receptors, Virus/genetics , Receptors, Virus/physiology , SARS-CoV-2/physiology , Selection, Genetic , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/physiology , Virus Internalization
4.
Front Immunol ; 12: 769543, 2021.
Article in English | MEDLINE | ID: covidwho-1520098

ABSTRACT

Many pathogens encode proteases that serve to antagonize the host immune system. In particular, viruses with a positive-sense single-stranded RNA genome [(+)ssRNA], including picornaviruses, flaviviruses, and coronaviruses, encode proteases that are not only required for processing viral polyproteins into functional units but also manipulate crucial host cellular processes through their proteolytic activity. Because these proteases must cleave numerous polyprotein sites as well as diverse host targets, evolution of these viral proteases is expected to be highly constrained. However, despite this strong evolutionary constraint, mounting evidence suggests that viral proteases such as picornavirus 3C, flavivirus NS3, and coronavirus 3CL, are engaged in molecular 'arms races' with their targeted host factors, resulting in host- and virus-specific determinants of protease cleavage. In cases where protease-mediated cleavage results in host immune inactivation, recurrent host gene evolution can result in avoidance of cleavage by viral proteases. In other cases, such as recently described examples in NLRP1 and CARD8, hosts have evolved 'tripwire' sequences that mimic protease cleavage sites and activate an immune response upon cleavage. In both cases, host evolution may be responsible for driving viral protease evolution, helping explain why viral proteases and polyprotein sites are divergent among related viruses despite such strong evolutionary constraint. Importantly, these evolutionary conflicts result in diverse protease-host interactions even within closely related host and viral species, thereby contributing to host range, zoonotic potential, and pathogenicity of viral infection. Such examples highlight the importance of examining viral protease-host interactions through an evolutionary lens.


Subject(s)
Immune System/immunology , Viral Proteases/immunology , Animals , Evolution, Molecular , Host Specificity/genetics , Host Specificity/immunology , Humans , Viral Proteases/genetics , Viral Proteins/genetics , Viral Proteins/immunology
5.
Viruses ; 13(10)2021 10 04.
Article in English | MEDLINE | ID: covidwho-1463828

ABSTRACT

SARS-CoV-2 is the etiological agent responsible for the ongoing COVID-19 pandemic, which continues to spread with devastating effects on global health and socioeconomics. The susceptibility of domestic and wild animal species to infection is a critical facet of SARS-CoV-2 ecology, since reverse zoonotic spillover events resulting in SARS-CoV-2 outbreaks in animal populations could result in the establishment of new virus reservoirs. Adaptive mutations in the virus to new animal species could also complicate ongoing mitigation strategies to combat SARS-CoV-2. In addition, animal species susceptible to SARS-CoV-2 infection are essential as standardized preclinical models for the development and efficacy testing of vaccines and therapeutics. In this review, we summarize the current findings regarding the susceptibility of different domestic and wild animal species to experimental SARS-CoV-2 infection and provide detailed descriptions of the clinical disease and transmissibility in these animals. In addition, we outline the documented natural infections in animals that have occurred at the human-animal interface. A comprehensive understanding of animal susceptibility to SARS-CoV-2 is crucial to inform public health, veterinary, and agricultural systems, and to guide environmental policies.


Subject(s)
Animals, Domestic/virology , Animals, Wild/virology , COVID-19/veterinary , SARS-CoV-2/genetics , Animals , COVID-19/pathology , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Host Specificity/genetics , Host Specificity/physiology , Zoonoses
6.
PLoS Biol ; 19(9): e3001390, 2021 09.
Article in English | MEDLINE | ID: covidwho-1440977

ABSTRACT

Determining which animal viruses may be capable of infecting humans is currently intractable at the time of their discovery, precluding prioritization of high-risk viruses for early investigation and outbreak preparedness. Given the increasing use of genomics in virus discovery and the otherwise sparse knowledge of the biology of newly discovered viruses, we developed machine learning models that identify candidate zoonoses solely using signatures of host range encoded in viral genomes. Within a dataset of 861 viral species with known zoonotic status, our approach outperformed models based on the phylogenetic relatedness of viruses to known human-infecting viruses (area under the receiver operating characteristic curve [AUC] = 0.773), distinguishing high-risk viruses within families that contain a minority of human-infecting species and identifying putatively undetected or so far unrealized zoonoses. Analyses of the underpinnings of model predictions suggested the existence of generalizable features of viral genomes that are independent of virus taxonomic relationships and that may preadapt viruses to infect humans. Our model reduced a second set of 645 animal-associated viruses that were excluded from training to 272 high and 41 very high-risk candidate zoonoses and showed significantly elevated predicted zoonotic risk in viruses from nonhuman primates, but not other mammalian or avian host groups. A second application showed that our models could have identified Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as a relatively high-risk coronavirus strain and that this prediction required no prior knowledge of zoonotic Severe Acute Respiratory Syndrome (SARS)-related coronaviruses. Genome-based zoonotic risk assessment provides a rapid, low-cost approach to enable evidence-driven virus surveillance and increases the feasibility of downstream biological and ecological characterization of viruses.


Subject(s)
Forecasting/methods , Host Specificity/genetics , Zoonoses/genetics , Animals , COVID-19/genetics , COVID-19/prevention & control , Disease Outbreaks/prevention & control , Genome, Viral/genetics , Humans , Machine Learning , Models, Theoretical , Phylogeny , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Viruses/classification , Viruses/genetics , Zoonoses/classification , Zoonoses/virology
7.
PLoS Genet ; 16(12): e1009272, 2020 12.
Article in English | MEDLINE | ID: covidwho-1388879

ABSTRACT

The Betacoronaviruses comprise multiple subgenera whose members have been implicated in human disease. As with SARS, MERS and now SARS-CoV-2, the origin and emergence of new variants are often attributed to events of recombination that alter host tropism or disease severity. In most cases, recombination has been detected by searches for excessively similar genomic regions in divergent strains; however, such analyses are complicated by the high mutation rates of RNA viruses, which can produce sequence similarities in distant strains by convergent mutations. By applying a genome-wide approach that examines the source of individual polymorphisms and that can be tested against null models in which recombination is absent and homoplasies can arise only by convergent mutations, we examine the extent and limits of recombination in Betacoronaviruses. We find that recombination accounts for nearly 40% of the polymorphisms circulating in populations and that gene exchange occurs almost exclusively among strains belonging to the same subgenus. Although experimental studies have shown that recombinational exchanges occur at random along the coronaviral genome, in nature, they are vastly overrepresented in regions controlling viral interaction with host cells.


Subject(s)
Betacoronavirus/classification , Betacoronavirus/genetics , Recombination, Genetic/genetics , Spike Glycoprotein, Coronavirus/genetics , Crossing Over, Genetic/genetics , Genes, Viral/genetics , Genome, Viral/genetics , Host Specificity/genetics , Models, Genetic , Polymorphism, Genetic , SARS-CoV-2/classification , SARS-CoV-2/genetics , Viral Tropism/genetics
8.
J Med Virol ; 93(3): 1786-1791, 2021 03.
Article in English | MEDLINE | ID: covidwho-1196491

ABSTRACT

Pangolin metagenomic data obtained from public databases were used to assemble partial or complete viral genomes showing genetic relationship to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Sendai virus, flavivirus, picornavirus, parvovirus, and genomovirus, respectively. Most of these virus genomes showed genomic recombination signals. Phylogeny based on the SARS-CoV-2-related virus sequences assembled in this study and those recently published indicated that pangolin SARS-CoV-2-related viruses were clustered into two sub-lineages according to geographic sampling sites. These findings suggest the need for further pangolin samples, from different countries, to be collected and analyzed for coronavirus to elucidate whether pangolins are intermittent hosts for SARS-CoV-2.


Subject(s)
COVID-19/virology , Genome, Viral/genetics , Metagenome/genetics , Pangolins/virology , SARS-CoV-2/genetics , Animals , Host Specificity/genetics , Metagenomics/methods , Phylogeny , Recombination, Genetic/genetics
9.
PLoS Pathog ; 17(4): e1009501, 2021 04.
Article in English | MEDLINE | ID: covidwho-1175434

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein mediates infection of cells expressing angiotensin-converting enzyme 2 (ACE2). ACE2 is also the viral receptor of SARS-CoV (SARS-CoV-1), a related coronavirus that emerged in 2002-2003. Horseshoe bats (genus Rhinolophus) are presumed to be the original reservoir of both viruses, and a SARS-like coronavirus, RaTG13, closely related to SARS-CoV-2, has been identified in one horseshoe-bat species. Here we characterize the ability of the S-protein receptor-binding domains (RBDs) of SARS-CoV-1, SARS-CoV-2, pangolin coronavirus (PgCoV), RaTG13, and LyRa11, a bat virus similar to SARS-CoV-1, to bind a range of ACE2 orthologs. We observed that the PgCoV RBD bound human ACE2 at least as efficiently as the SARS-CoV-2 RBD, and that both RBDs bound pangolin ACE2 efficiently. We also observed a high level of variability in binding to closely related horseshoe-bat ACE2 orthologs consistent with the heterogeneity of their RBD-binding regions. However five consensus horseshoe-bat ACE2 residues enhanced ACE2 binding to the SARS-CoV-2 RBD and neutralization of SARS-CoV-2 pseudoviruses by an enzymatically inactive immunoadhesin form of human ACE2 (hACE2-NN-Fc). Two of these mutations impaired neutralization of SARS-CoV-1 pseudoviruses. An hACE2-NN-Fc variant bearing all five mutations neutralized both SARS-CoV-2 pseudovirus and infectious virus more efficiently than wild-type hACE2-NN-Fc. These data suggest that SARS-CoV-1 and -2 originate from distinct bat species, and identify a more potently neutralizing form of soluble ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/immunology , COVID-19/immunology , COVID-19/virology , Chiroptera/metabolism , SARS-CoV-2/genetics , Animals , COVID-19/genetics , Chiroptera/genetics , Host Specificity/genetics , Host Specificity/immunology , Humans , Models, Molecular , Mutation , Protein Binding/genetics , Protein Binding/physiology , Receptors, Virus/metabolism , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/metabolism
10.
Front Public Health ; 8: 608765, 2020.
Article in English | MEDLINE | ID: covidwho-1110360

ABSTRACT

A novel severe acute respiratory syndrome coronavirus, SARS-CoV-2, emerged in China in December 2019 and spread worldwide, causing more than 1.3 million deaths in 11 months. Similar to the human SARS-CoV, SARS-CoV-2 shares strong sequence homologies with a sarbecovirus circulating in Rhinolophus affinis bats. Because bats are expected to be able to transmit their coronaviruses to intermediate animal hosts that in turn are a source of viruses able to cross species barriers and infect humans (so-called spillover model), the identification of an intermediate animal reservoir was the subject of intense researches. It was claimed that a reptile (Ophiophagus hannah) was the intermediate host. This hypothesis was quickly ruled out and replaced by the pangolin (Manis javanica) hypothesis. Yet, pangolin was also recently exonerated from SARS-CoV-2 transmission to humans, leaving other animal species as presumed guilty. Guided by the spillover model, several laboratories investigated in silico the species polymorphism of the angiotensin I converting enzyme 2 (ACE2) to find the best fits with the SARS-CoV-2 spike receptor-binding site. Following the same strategy, we used multi-sequence alignment, 3-D structure analysis, and electrostatic potential surface generation of ACE2 variants to predict their binding capacity to SARS-CoV-2. We report evidence that such simple in silico investigation is a powerful tool to quickly screen which species are potentially susceptible to SARS-CoV-2. However, possible receptor binding does not necessarily lead to successful replication in host. Therefore, we also discuss here the limitations of these in silico approaches in our quest on the origins of COVID-19 pandemic.


Subject(s)
COVID-19/immunology , COVID-19/pathology , Host Specificity/genetics , Receptors, Angiotensin/genetics , Replication Origin , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Animals , China , Chiroptera/virology , Genetic Predisposition to Disease , Humans , Ophiophagus hannah/virology , Pandemics , Pangolins/virology , Polymorphism, Single Nucleotide
11.
Commun Biol ; 3(1): 641, 2020 10 27.
Article in English | MEDLINE | ID: covidwho-894423

ABSTRACT

The emergence of SARS-CoV-2 has caused over a million human deaths and massive global disruption. The viral infection may also represent a threat to our closest living relatives, nonhuman primates. The contact surface of the host cell receptor, ACE2, displays amino acid residues that are critical for virus recognition, and variations at these critical residues modulate infection susceptibility. Infection studies have shown that some primate species develop COVID-19-like symptoms; however, the susceptibility of most primates is unknown. Here, we show that all apes and African and Asian monkeys (catarrhines), exhibit the same set of twelve key amino acid residues as human ACE2. Monkeys in the Americas, and some tarsiers, lemurs and lorisoids, differ at critical contact residues, and protein modeling predicts that these differences should greatly reduce SARS-CoV-2 binding affinity. Other lemurs are predicted to be closer to catarrhines in their susceptibility. Our study suggests that apes and African and Asian monkeys, and some lemurs, are likely to be highly susceptible to SARS-CoV-2. Urgent actions have been undertaken to limit the exposure of great apes to humans, and similar efforts may be necessary for many other primate species.


Subject(s)
Betacoronavirus/pathogenicity , Coronavirus Infections/veterinary , Host Specificity/genetics , Pandemics/veterinary , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/veterinary , Primate Diseases/enzymology , Primates/genetics , Receptors, Virus/genetics , Amino Acid Sequence , Amino Acid Substitution , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/physiology , Biological Evolution , COVID-19 , Chiroptera/genetics , Conserved Sequence , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Genetic Predisposition to Disease , Mammals/genetics , Models, Molecular , Mutation, Missense , Peptidyl-Dipeptidase A/chemistry , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Point Mutation , Primate Diseases/virology , Protein Binding , Protein Conformation , Risk , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Amino Acid , Species Specificity , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
12.
Elife ; 92020 10 01.
Article in English | MEDLINE | ID: covidwho-809713

ABSTRACT

Understanding the emergence of novel viruses requires an accurate and comprehensive annotation of their genomes. Overlapping genes (OLGs) are common in viruses and have been associated with pandemics but are still widely overlooked. We identify and characterize ORF3d, a novel OLG in SARS-CoV-2 that is also present in Guangxi pangolin-CoVs but not other closely related pangolin-CoVs or bat-CoVs. We then document evidence of ORF3d translation, characterize its protein sequence, and conduct an evolutionary analysis at three levels: between taxa (21 members of Severe acute respiratory syndrome-related coronavirus), between human hosts (3978 SARS-CoV-2 consensus sequences), and within human hosts (401 deeply sequenced SARS-CoV-2 samples). ORF3d has been independently identified and shown to elicit a strong antibody response in COVID-19 patients. However, it has been misclassified as the unrelated gene ORF3b, leading to confusion. Our results liken ORF3d to other accessory genes in emerging viruses and highlight the importance of OLGs.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/virology , Evolution, Molecular , Genes, Overlapping , Genes, Viral , Host Specificity/genetics , Open Reading Frames/genetics , Pandemics , Pneumonia, Viral/virology , Viral Proteins/genetics , Amino Acid Sequence , Animals , Antibodies, Viral/immunology , Antibody Specificity , Antigens, Viral/biosynthesis , Antigens, Viral/genetics , Antigens, Viral/immunology , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , COVID-19 , China/epidemiology , Chiroptera/virology , Coronavirus/genetics , Coronavirus Infections/epidemiology , Epitopes/genetics , Epitopes/immunology , Europe/epidemiology , Eutheria/virology , Gene Expression Regulation, Viral , Genetic Variation , Haplotypes/genetics , Humans , Models, Molecular , Mutation , Phylogeny , Pneumonia, Viral/epidemiology , Protein Biosynthesis , Protein Conformation , RNA, Viral/genetics , SARS-CoV-2 , Sequence Alignment , Sequence Homology, Nucleic Acid , Viral Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL